
1

CS 188: Artificial Intelligence

Review of Search, CSPs, Games

DISCLAIMER: It is insufficient to simply study these slides,
they are merely meant as a quick refresher of the high-level
ideas covered. You need to study all materials covered in

lecture, section, assignments and projects !

Pieter Abbeel – UC Berkeley

Many slides adapted from Dan Klein

Recap Search I
§  Agents that plan ahead à formalization: Search
§  Search problem:

§  States (configurations of the world)
§  Successor function: a function from states to

lists of (state, action, cost) triples; drawn as a graph
§  Start state and goal test

§  Search tree:
§  Nodes: represent plans for reaching states
§  Plans have costs (sum of action costs)

§  Search Algorithm:
§  Systematically builds a search tree
§  Chooses an ordering of the fringe (unexplored nodes)

Recap Search II
§  Tree Search vs. Graph Search
§  Priority queue to store fringe: different priority functions à

different search method
§  Uninformed Search Methods

§  Depth-First Search
§  Breadth-First Search
§  Uniform-Cost Search

§  Heuristic Search Methods
§  Greedy Search
§  A* Search --- heuristic design!

§  Admissibility: h(n) <= cost of cheapest path to a goal state. Ensures when goal node is expanded, no
other partial plans on fringe could be extended into a cheaper path to a goal state

§  Consistency: c(n->n’) >= h(n) – h(n’). Ensures when any node n is expanded during graph search the
partial plan that ended in n is the cheapest way to reach n.

§  Time and space complexity, completeness, optimality
§  Iterative Deepening (great space complexity!)

Reflex Agent

§  Choose action based on
current percept (and
maybe memory)

§  May have memory or a
model of the world’s
current state

§  Do not consider the future
consequences of their
actions

§  Act on how the world IS

§  Can a reflex agent be
rational?

§  Plan ahead
§  Ask “what if”
§  Decisions based on

(hypothesized)
consequences of
actions

§  Must have a model of
how the world evolves
in response to actions

§  Act on how the world
WOULD BE

Goal-based Agents

Search Problems
§  A search problem consists of:

§  A state space

§  A successor function

§  A start state and a goal test

§  A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

“N”,
1.0

“E”, 1.0

Example State Space Graph

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

8 1

8

2

3

1

4

4

15

1

3
2

2

Ridiculously tiny search graph
for a tiny search problem

2

Search Trees

§  A search tree:
§  This is a “what if” tree of plans and outcomes
§  Start state at the root node
§  Children correspond to successors
§  Nodes contain states, correspond to PLANS to those states
§  For most problems, we can never actually build the whole tree

“E”,
1.0

“N”, 1.0

General Tree Search

§  Important ideas:
§  Fringe
§  Expansion
§  Exploration strategy

§  Main question: which fringe nodes to explore?

Tree Search: Extra Work!

§  Failure to detect repeated states can cause
exponentially more work. Why?

Graph Search

§  Very simple fix: never expand a state twice

§  Can this wreck completeness? Optimality?

Admissible Heuristics
§  A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal
§  Often, admissible heuristics are solutions to

relaxed problems, with new actions (“some
cheating”) available

§  Examples:

15

•  Number of misplaced tiles
•  Sum over all misplaced tiles of

Manhattan distances to goal positions

Trivial Heuristics, Dominance
§  Dominance: ha ≥ hc if

§  Heuristics form a semi-lattice:
§  Max of admissible heuristics is admissible

§  Trivial heuristics
§  Bottom of lattice is the zero heuristic (what

does this give us?)
§  Top of lattice is the exact heuristic

3

Consistency

§  Consistency:

§  Required for A* graph search to be optimal
§  It ensures that when a node gets expanded, that node’s final

state was reached along the shortest path to reach that final
state

§  Consistency implies admissibility

A* heuristics --- pacman trying to eat all
food pellets

§  Consider an algorithm that takes the distance to the
closest food pellet, say at (x,y). Then it adds the
distance between (x,y) and the closest food pellet to
(x,y), and continues this process until no pellets are left,
each time calculating the distance from the last pellet. Is
this heuristic admissible?

§  What if we used the Manhattan distance rather than
distance in the maze in the above procedure?

14

A* heuristics
§  A particular procedure to quickly find a perhaps

suboptimal solution to the search problem is in
general not admissible.
§  It is only admissible if it always finds the optimal

solution (but then it is already solving the problem we
care about, hence not that interesting as a heustic).

§  A particular procedure to quickly find a perhaps
suboptimal solution to a relaxed version of the
search problem need not be admissible.
§  It will be admissible if it always finds the optimal

solution to the relaxed problem.
15

Recap CSPs
§  CSPs are a special kind of search problem:

§  States defined by values of a fixed set of variables
§  Goal test defined by constraints on variable values

§  Backtracking = depth-first search (why?, tree or graph search?) with
§  Branching on only one variable per layer in search tree

§  Incremental constraint checks (“Fail fast”)

§  Heuristics at our points of choice to improve running time:
§  Ordering variables: Minimum Remaining Values and Degree Heuristic

§  Ordering of values: Least Constraining Value

§  Filtering: forward checking, arc consistency
§  à computation of heuristics + pruning of domains might lead to early realization need to backtrack

§  Structure: Disconnected and tree-structured CSPs are efficient
§  Non-tree-structured CSP can become tree-structured after some variables have been

assigned values

§  Iterative improvement: min-conflicts is usually effective in practice 16

Example: Map-Coloring
§  Variables:

§  Domain:

§  Constraints: adjacent regions must have
different colors

§  Implicit:

§  Explicit:

§  Solutions are assignments satisfying all
constraints, e.g.:

 17

Consistency of An Arc
§  An arc X → Y is consistent iff for every x in the tail there is some y in

the head which could be assigned without violating a constraint

•  If X loses a value, neighbors of X need to be rechecked!
•  Arc consistency detects failure earlier than forward checking, but more work!
•  Can be run as a preprocessor or after each assignment
•  Forward checking = Enforcing consistency of each arc pointing to the new

assignment

WA SA
NT Q

NSW
V

18

Delete
from tail!

4

19

Tree-Structured CSPs

§  Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d2) time
§  Compare to general CSPs, where worst-case time is O(dn)

§  This property also applies to probabilistic reasoning (later): an
important example of the relation between syntactic restrictions and
the complexity of reasoning.

20

Nearly Tree-Structured CSPs

§  Conditioning: instantiate a variable, prune its neighbors' domains

§  Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

§  Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c 21

Hill Climbing

§  Simple, general idea:
§  Start wherever
§  Always choose the best neighbor
§  If no neighbors have better scores than

current, quit

§  Why can this be a terrible idea?
§ Complete?
§ Optimal?

§  What’s good about it?
22

Hill Climbing Diagram

§  Random restarts?
§  Random sideways steps? 23

Recap Games
§  Want algorithms for calculating a strategy (policy) which

recommends a move in each state
§  Deterministic zero-sum games

§  Minimax
§  Alpha-Beta pruning:

§  speed-up up to: O(bd) à O(bd/2)
§  exact for root (lower nodes could be approximate)

§  Speed-up (suboptimal): Limited depth and evaluation functions
§  Iterative deepening (can help alpha-beta through ordering!)

§  Stochastic games
§  Expectimax

§  Non-zero-sum games
24

5

Minimax Properties
§  Optimal against a perfect player. Otherwise?

§  Time complexity?
§  O(bm)

§  Space complexity?
§  O(bm)

§  For chess, b ≈ 35, m ≈ 100
§  Exact solution is completely infeasible
§  But, do we need to explore the whole tree?

10 10 9 100

max

min

25

Pruning

26

3 12 8 2 14 5 2

Evaluation Functions

§  With depth-limited search
§  Partial plan is returned
§ Only first move of partial plan is executed
§ When again maximizer’s turn, run a depth-

limited search again and repeat

§  How deep to search?

27

Expectimax

28

12 9 6 0 3 2 15 4 6

Stochastic Two-Player
§  E.g. backgammon
§  Expectiminimax (!)

§  Environment is an
extra player that moves
after each agent

§  Chance nodes take
expectations, otherwise
like minimax

29

Non-Zero-Sum Utilities
§  Similar to

minimax:
§  Terminals have

utility tuples
§  Node values

are also utility
tuples

§  Each player
maximizes its
own utility and
propagate (or
back up) nodes
from children

§  Can give rise
to cooperation
and
competition
dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

30

