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CS 188: Artificial Intelligence 
 

Review of Search, CSPs, Games 
 
 

DISCLAIMER: It is insufficient to simply study these slides, 
they are merely meant as a quick refresher of the high-level 
ideas covered.  You need to study all materials covered in 

lecture, section, assignments and projects ! 

Pieter Abbeel – UC Berkeley 

Many slides adapted from Dan Klein 

Recap Search I 
§  Agents that plan ahead à formalization: Search 
§  Search problem: 

§  States (configurations of the world) 
§  Successor function: a function from states to  

lists of (state, action, cost) triples; drawn as a graph 
§  Start state and goal test 

§  Search tree: 
§  Nodes: represent plans for reaching states 
§  Plans have costs (sum of action costs) 

§  Search Algorithm: 
§  Systematically builds a search tree 
§  Chooses an ordering of the fringe (unexplored nodes) 

Recap Search II 
§  Tree Search vs. Graph Search 
§  Priority queue to store fringe: different priority functions à 

different search method 
§  Uninformed Search Methods 

§  Depth-First Search 
§  Breadth-First Search   
§  Uniform-Cost Search 

§  Heuristic Search Methods 
§  Greedy Search 
§  A* Search  --- heuristic design!   

§  Admissibility: h(n) <= cost of cheapest path to a goal state.  Ensures when goal node is expanded, no 
other partial plans on fringe could be extended into a cheaper path to a goal state 

§  Consistency: c(n->n’) >=  h(n) – h(n’).  Ensures when any node n is expanded during graph search the 
partial plan that ended in n is the cheapest way to reach n.   

§  Time and space complexity, completeness, optimality 
§  Iterative Deepening (great space complexity!) 

Reflex Agent 

§  Choose action based on 
current percept (and 
maybe memory) 

§  May have memory or a 
model of the world’s 
current state 

§  Do not consider the future 
consequences of their 
actions 

§  Act on how the world IS 

§  Can a reflex agent be 
rational? 

§  Plan ahead 
§  Ask “what if” 
§  Decisions based on 

(hypothesized) 
consequences of 
actions 

§  Must have a model of 
how the world evolves 
in response to actions 

§  Act on how the world 
WOULD BE 

Goal-based Agents 

Search Problems 
§  A search problem consists of: 

§  A state space 

§  A successor function 

§  A start state and a goal test 

§  A solution is a sequence of actions (a plan) 
which transforms the start state to a goal state 
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Example State Space Graph 
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Ridiculously tiny search graph 
for a tiny search problem 
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Search Trees 

§  A search tree: 
§  This is a “what if” tree of plans and outcomes 
§  Start state at the root node 
§  Children correspond to successors 
§  Nodes contain states, correspond to PLANS to those states 
§  For most problems, we can never actually build the whole tree 
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General Tree Search 

§  Important ideas: 
§  Fringe 
§  Expansion 
§  Exploration strategy 

§  Main question: which fringe nodes to explore? 

Tree Search: Extra Work! 

§  Failure to detect repeated states can cause 
exponentially more work.  Why? 

Graph Search 

§  Very simple fix: never expand a state twice 

§  Can this wreck completeness?  Optimality? 

Admissible Heuristics 
§  A heuristic h is admissible (optimistic) if: 

 where             is the true cost to a nearest goal 
§  Often, admissible heuristics are solutions to 

relaxed problems, with new actions (“some 
cheating”) available 

§  Examples: 

15 

•  Number of misplaced tiles 
•  Sum over all misplaced tiles of 

Manhattan distances to goal positions 

Trivial Heuristics, Dominance 
§  Dominance: ha ≥ hc if 

§  Heuristics form a semi-lattice: 
§  Max of admissible heuristics is admissible 

§  Trivial heuristics 
§  Bottom of lattice is the zero heuristic (what 

does this give us?) 
§  Top of lattice is the exact heuristic 
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Consistency 

§  Consistency: 

§  Required for A* graph search to be optimal 
§  It ensures that when a node gets expanded, that node’s final 

state was reached along the shortest path to reach that final 
state 

§  Consistency implies admissibility 

A* heuristics --- pacman trying to eat all 
food pellets 

§  Consider an algorithm that takes the distance to the 
closest food pellet, say at (x,y).  Then it adds the 
distance between (x,y) and the closest food pellet to 
(x,y), and continues this process until no pellets are left, 
each time calculating the distance from the last pellet.  Is 
this heuristic admissible?   

§  What if we used the Manhattan distance rather than 
distance in the maze in the above procedure? 
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A* heuristics 
§  A particular procedure to quickly find a perhaps 

suboptimal solution to the search problem is in 
general not admissible.   
§  It is only admissible if it always finds the optimal 

solution (but then it is already solving the problem we 
care about, hence not that interesting as a heustic). 

§  A particular procedure to quickly find a perhaps 
suboptimal solution to a relaxed version of the 
search problem need not be admissible.   
§  It will be admissible if it always finds the optimal 

solution to the relaxed problem. 
15 

Recap CSPs 
§  CSPs are a special kind of search problem: 

§  States defined by values of a fixed set of variables 
§  Goal test defined by constraints on variable values 

§  Backtracking = depth-first search (why?, tree or graph search?) with 
§  Branching on only one variable per layer in search tree 

§  Incremental constraint checks  (“Fail fast”) 

§  Heuristics at our points of choice to improve running time: 
§  Ordering variables: Minimum Remaining Values and Degree Heuristic 

§  Ordering of values: Least Constraining Value 

§  Filtering: forward checking, arc consistency   
§  à computation of heuristics + pruning of domains might lead to early realization need to backtrack 

§  Structure: Disconnected and tree-structured CSPs are efficient 
§  Non-tree-structured CSP can become tree-structured after some variables have been 

assigned values  

§  Iterative improvement: min-conflicts is usually effective in practice 16 

Example: Map-Coloring 
§  Variables: 

§  Domain: 

§  Constraints: adjacent regions must have 
different colors 

§  Implicit: 

§  Explicit:  

§  Solutions are assignments satisfying all 
constraints, e.g.: 

  17 

Consistency of An Arc 
§  An arc X → Y is consistent iff for every x in the tail there is some y in 

the head which could be assigned without violating a constraint 

•  If X loses a value, neighbors of X need to be rechecked! 
•  Arc consistency detects failure earlier than forward checking, but more work! 
•  Can be run as a preprocessor or after each assignment  
•  Forward checking = Enforcing consistency of each arc pointing to the new 

assignment 

WA SA 
NT Q 

NSW 
V 

18 

Delete 
from tail! 
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Tree-Structured CSPs 

§  Theorem: if the constraint graph has no loops, the CSP can be 
solved in O(n d2) time 
§  Compare to general CSPs, where worst-case time is O(dn) 

§  This property also applies to probabilistic reasoning (later): an 
important example of the relation between syntactic restrictions and 
the complexity of reasoning. 

20 

Nearly Tree-Structured CSPs 

§  Conditioning: instantiate a variable, prune its neighbors' domains 

§  Cutset conditioning: instantiate (in all ways) a set of variables such 
that the remaining constraint graph is a tree 

§  Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c 21 

Hill Climbing 

§  Simple, general idea: 
§  Start wherever 
§  Always choose the best neighbor 
§  If no neighbors have better scores than 

current, quit 

§  Why can this be a terrible idea? 
§ Complete? 
§ Optimal? 

§  What’s good about it? 
22 

Hill Climbing Diagram 

§  Random restarts? 
§  Random sideways steps? 23 

Recap Games 
§  Want algorithms for calculating a strategy (policy) which 

recommends a move in each state 
§  Deterministic zero-sum games 

§  Minimax 
§  Alpha-Beta pruning:  

§  speed-up up to: O(bd)  à O(bd/2) 
§  exact for root (lower nodes could be approximate) 

§  Speed-up (suboptimal): Limited depth and evaluation functions 
§  Iterative deepening (can help alpha-beta through ordering!) 

§  Stochastic games 
§  Expectimax 

§  Non-zero-sum games 
24 
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Minimax Properties 
§  Optimal against a perfect player.  Otherwise? 

§  Time complexity? 
§  O(bm) 

§  Space complexity? 
§  O(bm) 

§  For chess, b ≈ 35, m ≈ 100 
§  Exact solution is completely infeasible 
§  But, do we need to explore the whole tree? 

10 10 9 100 

max 

min 

25 

Pruning 
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Evaluation Functions 

§  With depth-limited search 
§  Partial plan is returned 
§ Only first move of partial plan is executed 
§ When again maximizer’s turn, run a depth-

limited search again and repeat 

§  How deep to search? 

27 

Expectimax 
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Stochastic Two-Player 
§  E.g. backgammon 
§  Expectiminimax (!) 

§  Environment is an 
extra player that moves 
after each agent 

§  Chance nodes take 
expectations, otherwise 
like minimax 
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Non-Zero-Sum Utilities 
§  Similar to 

minimax: 
§  Terminals have 

utility tuples 
§  Node values 

are also utility 
tuples 

§  Each player 
maximizes its 
own utility and 
propagate (or 
back up) nodes 
from children 

§  Can give rise 
to cooperation 
and 
competition 
dynamically… 

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5 
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